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SECTION 1
INTRODUCTION

The calculation of the large deformation response of structures by finite element
methods is often a difficult task because the user has little guidance as to the size of the

“elements that need to be used. This is a particularly severe handicap in calculating the

failure of structures because failure often results in localization of deformation.
Localization requires considerable refinement of the mesh, in the area of localization if
the failure mode is to be calculated accurately. Therefore, the user must anticipate
where localization is likely to occur in designing the mesh or make several runs to
achieve an accurate solution. Adaptivity provides a way for reducing this burden by
providing an automatic selection of appropriate element refinement. In adaptive
programs, elements are subdivided in areas where refinement is needed so that the
required accuracy is maintained. This refinement is guided by error indicators, which
indicate an approximate level of the errors which are engendered by the finite element
approximation; refinement criteria which are not based on error criteria can also be
used.

This report describes the implementation of adaptivity in the computer program
DYNAZ2D, (Whirley, et al 1992). The adaptivity is performed by subdividing elements
into smaller elements according to error or refinement criteria, which is called k-
adaptivity. The name h-adaptivity stems from the association of h with element size in
the finite element literature. DYNA2D is a program originated by John Hallquist at
Lawrence Livermore Laboratory. This program is a general purpose program for the
nonlinear dynamics of solids and structures. It is based on explicit time integration, so
it does not store or compute a stiffness matrix. H-adaptivity enables the user of the
program to automatically refine portions of the mesh according to error or refinement
criteria so that accuracy is increased for a given amount of computational resources.
This is of particular importance in nonlinear failure problems because the most crucial
areas for the placement of nodes and refinement of the mesh are in the failure areas. In
h-adaptivity, the program will automatically refine the mesh in areas of the mesh in
which the estimated error is large, and thus improve accuracy.

The program DYNA2D was chosen for this effort because it is widely used in the
defense community and has a large range of capabilities for nonlinear analysis of
weapons effects and related problems. Among the attractive features and capabilities of



DYNAZ2D are a large material library, an effective sliding interface for contact-impact,
and the availability of capabilities such as rezoning and remeshing, postprocessing and
interactive display, and the availability of a compatible preprocessor MAZE, (Hallquist
1983). Furthermore, the development of these procedures in DYNA2D has provided
insight into adding adaptivity to other programs such as DYNA2D.

During the course of this work, it was found that it is very difficult to modify a program
such as DYNA2D to internally implement h-adaptivity. The implementation of
adaptivity requires so many changes throughout the program that our initial efforts in
this direction were totally unsuccessful and could not even invoke a very limited subset
of DYNA2D functionality. After further consideration of this approach, it also became
clear that internal modifications would preclude its use by many other users, since
many versions of DYNA2D are under separate development in the defense community.

Therefore, we selected an approach in which the programming for the h-adaptivity is
completely external to DYNA2D and an h-adaptive run is executed through a series of
DYNAZ2D restarts and rezones. This enabled us to keep all coding for the h-adaptivity
completely separate from DYNA2D, thus making the h-adaptive procedures usable in
later versions of DYNA2D and versions of DYNA2D which have been modified by

other agencies.

This report is organized as follows. Section 2 describes the general framework of
DYNAZ2D, of h-adaptivity and the procedures involved in its implementations and the
error criteria which have been implemented in the program. Section 3 gives some
examples of h-adaptive solutions, which is followed by conclusions in Section 4.



SECTION 2
METHODOLOGY

2.1 OUTLINE AND NOTATION.

This Section briefly describes the methodology of DYNA2D and then gives a
description of h-adaptivity, the reasons for selection of h-adaptivity and the refinement
and error criteria implemented in this work.

Vectors, tensors and matrices in this report are indicated by boldface. Indicial notation
is also used. In indicial notation, the elements of a vector tensor or matrix are indicated
by subscripts; for example, in indicial notation the elements of vector x are indicated by
x,. Upper case subscripts are used for nodal numbers, so x; are the coordinates at node
L

2.2 COMPUTATIONAL PROCEDURE IN DYNA2D.

DYNAZ2D is a finite element program for calculating the nonlinear response of solids in
two dimensions; in addition, axisymmetric three dimensional structures can be treated.
The program uses explicit time integration. In the nonlinear continuum mechanics
formulation in DYNA2D, the deformation of the solid is described by

x =x(X,?) (2.1)

where x=[x,y] are the current spatial coordinates and X=[X,Y] are the material or
original coordinates of a material point. In a finite element program, the deformation is
approximated by subdividing the domain of the problem {2 into elements €, such that
Q2 =0u8,. In each element, the deformation is approximated by shape functions N, so
that

X= z'j‘,Nl g, 77 a( (2.2)

where &, 7 are the coordinates of the element in the parent element plane and x; are the
coordinates of node I of element e: x, = [x;, y,‘]; m is the number of nodes in the element.

The displacement field u(Xt) is approximated by the same shape functions




ue(X, t)=ﬁ1v,(§, s (1) (2.3)

where u;, are the nodal displacements of element e; u, = [u,,, u_v,]. The nodal velocities

are obtained from Equation (2.3) by taking a time derivative, which gives
vi(X1)= ZN (& mpvi() levl (2.4)

where v} are the nodal velocities of element e. The nodal displacements and nodal
velocities of the entire mesh are denoted by u, and v,, respectively; in vector notation,

they are denoted by u, and v,, respectively.

The deformation in DYNA2D is measured by the velocity strain tensor, which is

denoted by € and given by

. dv, .
E; = [ 2, E] or £=symVv (2.5)

The velocity strain is a rate of measure of deformation, rather than a measure of the total
deformation, or strain, which has occurred at a point. The rate-of-deformation in an

element given by

é=Y symVN,v, =Y By, (2.6)
1=1 I=1
where
B, =symVN, : (2.7)

In explicit programs, rate measures of deformation at times oscillate markedly in
comparison to total measures of deformation. Furthermore, the integral of the velocity
strain is not path independent, so the integral of the rate-of-deformation does not

represent a good measure of the total strain.

The finite element procedure in DYNA2D uses a semidiscretization of the momentum
equation. This leads to the finite element form of the equations of motion

My, =~ —f, =f, (2.8)



where M, is a mass matrix, which is lumped, and consequently diagonal; a superposed
dot denotes a time derivative and f* and f™ are the external and internal nodal forces;
as indicated in the second equality, the difference between the external and internal
nodal forces are often indicated as a net force. The internal nodal forces are given by

f7 = [BjodQ (29)

2,

where o is the Cauchy stress.

Equation (2.8) is integrated in time by a central-difference explicit method. The central
difference method is conditionally stable, and its time step depends on the smallest
element in the mesh. Most simulations of nonlinear structural dynamics problems
require many time steps. Generally, on the order of 10° or 10° time steps are used, but
it is not unusual to have simulations with 10° time steps. This has important
implications on the implementation of adaptivity, since the mesh can be refined only on
the order of ten times in a simulation if the computational cost of adaptivity is to be
reasonable.

2.3 ADAPTIVITY.

We will first describe why h-adaptivity was selected for DYNA2D among the various
types of adaptivity available for finite elements analysis. There are basically three types
of adaptivity:

1. r-adaptivity, in which the nodes are moved so that the degrees of freedom are
concentrated in the areas where they are needed;

2. p-adaptivity, in which the order of the interpolating function in the element is
increased when more accuracy is needed;

3. h-adaptivity, in which the elements are subdivided when more accuracy is needed.

The capabilities of r-adaptivity are quite limited in most practical meshes. For example,
if the nodes are needed primarily on a diagonal line across a square mesh, when the
starting point is a uniform mesh, it is impossible to move many of the nodes to the
diagonal without inducing excessive mesh distortion. Mesh distortion degrades the
accuracy of finite elements, so some of the benefits of moving the nodes are lost.
Furthermore, nodes cannot be moved across material interfaces without invalidating




the model. Therefore, in general, very little additional accuracy can be gained by 7-
adaptivity.

In p-adaptivity, the order of the interpolating polynomial is raised where more accuracy
is needed. For example if an element is initially a bilinear element, then p-adaptivity

~ would increase the order of the element to a biquadratic element. P-adaptivity is
unsuitable for this effort with explicit nonlinear-structural dynamics for two reasons:

1. It is not compatible with for the approach chosen for the implementation of
adaptivity, namely a paradigm in which all modifications for adaptivity are completely
outside of the target ‘computer program, because DYNA2D contains only low order
elements.

2. This type of adaptivity is not advisable in explicit codes because explicit methods use
diagonal mass matrices, and diagonal mass matrices of suitable accuracy have not been

developed for higher order elements.

Based on these arguments, h-adaptivity was selected for this implementation of
DYNA2D. In h-adaptivity, it is also possible to fuse elements, or in other words, to
unrefine the mesh, when a coarser mesh is adequate. However, only refinement, which
we will often call fission, is included in this implementation of h-adaptivity. The
elements are not fused when the refinement is no longer necessary, because fusion of
elements requires a complex data base and is quite difficult for general purpose

programs.

The fission process for the elements in DYNA2D is shown in Figure 2-1. As can be seen
from the figure, triangles are refined by splitting them into four triangles by connecting
the midsides of the nodes. Quadrilaterals are refined by splitting them into four
quadrilateral by connecting the midpoints of the sides. In the fission process, new
nodes are also generated. As can be seen from Figure 2-1, the nodes generated by
refinement are either free nodes or slave nodes. The motion of free nodes is completely
unconstrained except for boundary conditions, so the addition of these nodes adds extra
degrees of freedom to the model. The motion of slave nodes is constrained by the need
to observe compatibility between adjacent elements. The nodes at the midpoints of
sides of the larger elements are slave nodes; the treatment of these nodes is described

later.



Each subdivision is called a level of fission. Elements may be refined an arbitrary
number of levels, so that elements which are formed by splitting or subdivision of a
previous element may be further subdivided. The number of subdivisions is limited in
the program by an input parameter.

The fission process, the arrangement of elements is limited by the 1-irregular rule
(Devloo, et al 1987). ‘This rule requires that the difference in the level of subdivision
between adjacent elements be at most two. As a consequence, at most one slave node
can be inserted in any edge.

The motion of slave nodes is constrained by the motion of the adjacent corner nodes so
that compatibility is maintained between the subdivided element and the larger element
adjacent to it. The displacement and velocity fields for elements in DYNAZ2D, the three
node triangle and four node quadrilateral, are linear along the edges. The motion of a
slave node must conform to the linear velocity field of the larger element to satisfy
compatibility. For example, if we consider nodes 1, 2 and 3 in Figure 2-1, then to
maintain compatibility of the adjacent elements along this edge the velocity of the
midpoint node, that is the slave node, must be given by

1
v, = -2-(v1 +v,) (2.10)

where v; are the nodal velocities; v, = [vx,, vv,] where v,; and v,; are the x and y

components of nodes I, respectively. The equations of motion, Equations 2.8, do not
pertain to slave nodes. Therefore, the forces on the slave nodes must be transferred to
master nodes. Nodes which are not constrained, such as nodes 1 and 3, are called
master nodes. The internal force at node 2 is transferred to nodes 1 and 3 according to
the following procedure based on the principle of virtual work. Let the internal forces
at node I be denoted by f;" = [f £, By the principle of virtual work, the virtual work

of nodal force transferred from slave node 2 to the virtual work of the nodal forces
transferred to master nodes 1 and 3. This means that

v, £ = &y, - £ + v, - £ (2.11)




From Equation (2.10),

ov, = %(&, +6v,) (2.12)

so substituting the above into Equation (2.11) yields
-;—(5"] +6v,)-£5 = 6v, £} + 6v, - £} (2.13)

The above must hold for arbitrary v, and dv, so it follows that

int 1 int .

=21 (2.14)
int 1 int

f3 =5f2 (215)

These nodal forces are added to the nodal forces which arise at nodes 1 and from the

elements directly connected to these nodes.

® siave node O free node

\J

] A

Figure 2-1. Example of h-adaptivity for a quadrilateral element; the left element has
been refined one level.




2.4 ERROR AND REFINEMENT INDICATORS.

In adaptive methods, an error or refinement indicator must be computed to determine
which elements need to be refined. Error indicators are distinguished from refinement
indicators in that the latter make no attempt to estimate an error but simply refine on
the basis of certain characteristics of the solution. In nonlinear, transient analysis, little
theoretical justification is available for the error indicators which are used. However,
preliminary studies (Belytschko and Tabbara 1993) show that the indicators used in
linear analysis are also quite effective in nonlinear analysis. In addition, to an error
indicator, several refinement indicators are included in this program. These refinement
indicators use the magnitude of specific physical quantities to drive the adaptivity.

The error indicator selected here is based on an estimate of the error in the Green-
Lagrange strain. The estimate is obtained by a projection of the finite element solution
with the moving least-square interpolation described in (Tabbara, et al 1994). The
projection criterion developed here is very similar to the local projection error indicator
(Zienkiewicz and Zhu 1987) except that the projected solution is obtained by a moving
least-square approximation, which has been found to be a more accurate in (Tabbara, et
al 1994). This error criterion is an improvement of the earlier global projections of
(Zienkiewicz and Zhu 1987). This procedure is also known as error estimation by a
recovery technique.

In a recovery technique, a local projection is used to obtain an approximation to the
exact solution denoted by u*(X,t). This projected solution is obtained by minimizing the
L2 norm of the difference between the projected i.e. recovered solution and the finite
element solution. The error in the Green-Lagrange stain in an element e of any function
fiX,t) is denoted by 6,, and is given by

6.= Q' [(E; - E})(E; - E})dQ | (2.16)
nt

where E; is obtained from the projected solution and E; is the Green-strain computed

from the finite element solution. As can be seen from the above, the integral of the error

is divided by the domain (or area in two dimensions) of the element, so it is a density of

error.



The rate-of-deformation tensor which is used in DYNA2D for constitutive evaluations
Equation (2.5) is not suitable as an error criterion because it is not path-independent,
furthermore, since it gives a rate of strain it tends to be noisy. The Green-Lagrange
strain is path independent and a measure of strain. Therefore, it is more suitable for our
own error criterion. The Green-Lagrange strain tensor E is given by

1 du,  ou, auk du,
E; = (FuFy = §)= [9x R .(2.17)

where F,; is the deformation gradient, which is given by

ox; _ Ou;
Fy= = O (2.18)

and §; is the Kronecker delta, or unit matrix.

The projected Green-Lagrange strain is.obtained from a moving least-square
approximation for the displacement field. For the purpose of computing this
approximation, a local circular domain Qg is defined about the centroid of the element

of interest. The radius of the domain is denoted by R,; it is set by a procedure described
subsequently. This domain is called the domain of influence of the approximation.

The projection of the displacement field u’(X,¢) is obtained by a weight least square
projection. For this purpose, the displacement fields are approximated in the
subdomain £, by

u (X,1)= P(X)ai(X, t) (2.19)

where P(X) is a monomial basis and a,(X,?) are coefficients which vary in space. A

bilinear basis is used for P(X) , so P(X) is given by
P(X)=[LX,Y,XY] (2.20)

In the moving least-square approximation, the parameters a,(X,?) at any time t are

determined by minimizing the weighted quadratic form

(a,(X,1)) ZWX X, )(P(X,)a,(X,1)- u,e) (2.21)

10



where uj, are the components of the finite element nodal displacements at node I and
w(X-X,) is a weight function given by

w(X-X,)=exp(-{X - X,|/(0.44,)’) (2.22)

“and d,, is twice the maximum element diagonal for any element in the domain of

influence. This choice for d,, is based on experience which shows that the domain of
influence should include the elements which surround the element under consideration
but that the exponential should have decayed markedly at the nodes which are not part
of the element under consideration. The minimization of S(a,(X,?)) leads to a system of
linear equations in a,(X,#). The gradient of the displacement field is then obtained
using Equations (2.19) and (2.20) which gives

ou,

X

X a, +a,Y (2.23)

%—;{- =a, +a, X (2.24)
Ou,

-é}— = azy + a4),Y - (2'25)

ou, '
al;; =a, +a,¥ (2.26)
These gradients are then substituted into Equation (2.17) to obtain the projected Green-

strain E;. Note that the derivatives of the coefficients 4; are not considered in

computing the gradients.
The remaining indicators included in the program are not based on an estimate of error
but are refinement indicators which drive refinement on the basis of certain physical

quantities that are likely to be high where refinement is needed. The following are
included:

1. The effective stress which is given by

~_(3
o= (—2— s,.js,.j) (2.27)
where s, is the deviatoric stress which is given by

11




s; =0, — pd; (2.28)
2. The trace of the stress tensor which is given by

trace(O',.j) = Oy (2.29)
3. The effective plastic strain is given by

FP = .[odep - (2.30)

where

%

2
de” = (%degdsg) (2.31)

2.5 IMPLEMENTATION.

H-adaptivity was implemented in DYNA2D by developing an external program which
performs the calculation of error criteria and the remeshing. The details of the
implementation are described subsequently, after the procedure is described.

The basic procedure of h-adaptivity for nonlinear transient problems is summarized in

Table 2-1. As can be seen from Table 2-1, the adaptive program updates the mesh by
integrating the equations of motion a selected time interval, denoted by 4t,,,,, and then

checks the refinement or error criteria for all of the elements in the mesh. Any elements
for which the refinement criteria are exceeded are then subdivided.

The program then repeats the time interval At,,,, with the refined mesh and writes a
restart tape; it then continues for the time interval At,,,, beyond the time at which the
error criterion was previously checked before checking refinement criteria again. If the
refinement criteria indicate that any elements need to be refined, the elements are
subdivided and the computation is restarted with the restart tape which was previously

written. The procedure is called a go-back procedure.
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Table 2-1. Flowchart of Adaptive Procedure.

1. Initialize, set t,,,, = At,,,.
2. Integrate the equations of motion, Equations 2-7, to a specified time 7.,
3. Check error or refinement indicators 6, for all elements e,
if 6,>refinement threshold for element e, subdivide element e.
4. Set 1,4, =ty + Ay, and goto 2.

A schematic of the go-back procedure is shown in Figure 2-2, which shows the time line
for a computation with two refinement steps involving a total of three meshes: Mesh 1,
Mesh 2, and Mesh 3. As can be seen from Figure 2-2, the computation starts with Mesh
1, which is refined at the first terror check to obtain Mesh 2; Mesh 2 repeats the
computation over the time interval from (0 <t< Atmp,) and then continues to 24z,,,,.
Time histories are stored for the interval 0 <t < 4¢,,,, only for the Mesh 2 computations,
not for the Mesh 1 computation. At 24z,
literature, for example (Devloo, Oden and Strouboulis 1987), it is often advocated that
the computation not proceed beyond the last error check until the error criteria are
satisfied. Unfortunately, this leads to the possibility that the computation will iterate
many times in a single time interval, which is not desirable in a production program.

the next error check is made. In the

O Refinement stage
Mesh 3
O 0O
Mesh 2 \
<‘<\ »0
O——»0
Mesh 1
| | | time
| I |
0 2 3A
adapt adapt adapt

Figure 2-2.  Flow of computations in adaptivity with a go-back procedure.
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In the go-back procedure, two different meshes are used for the computations of any
time interval. Thus the adaptive computation will be at least twice as expensive as a

coarse mesh computation.

The refinement procedure involves four steps:
1. check the error or refinement criteria for all elements;
2. generate new nodes and elements where refinement is needed;
3. generate new starting data for new elements and nodes;
4. generate new data for boundary conditions, loads, etc.

In first step, the error or refinement indicators are computed by the external program,
according to the equations in Section 2-4. These indicators are checked against a user-
input tolerance, and any element which exceeds the tolerance is listed for subdivision.
Only elements which have not exceeded a specified number of levels of refinement are
refined. In the refinement procedure, new elements and nodes are generated. The new
nodes and elements are numbered according to the following: the lower-left element
retains the same number as the original element, and the other three new elements are
added to the end of the element list; the new nodes are always added to the end of the
node list. Nodes are classified as free nodes or slave nodes depending on the

refinement of the contiguous elements.

Slave nodes which are generated by refinement are treated similarly to tielines in
DYNAZ2D. The actual DYNA2D routines could not be used for the slave nodes so a
modified routine was written which implements Equations (2.10) and (2.14-2.15).

The starting values of stresses and other state variables must be set in the elements
which have been generated by the refinement, and the velocities and displacements are
initiated for the new nodes. The new starting data are obtained by the REZONE
algorithm in DYNA2D, which sets new values of element and nodal variables according
to a least square projection. The descendant elements are assigned the same material

properties as the parent element.
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The fourth step requires the following data to be provided so that it reflects the addition
of the new nodes to the model:

1. boundary conditions

2. nodal loads, i.e. f*"

3. slideline data

This fourth step is quite difficult, and it has led to problems in this program and many
other adaptive programs, for it requires an interpretation of the problem statement from
the discrete data. In other words, it is necessary to interpret the data for the initial mesh
in order to develop the data for the new nodes.

For the boundary conditions, the following rule is used. The original nodes are called
the edge parent nodes. The boundary condition of the new node is set according to the
boundary conditions of the two parent nodes, if the parent nodes have the same
boundary condition. If the two parent nodes have different boundary conditions, but
the constraints on one node are less restrictive, then the less restrictive boundary
conditions are assigned to the new node. For example, if the boundary conditions for
parent nodes A and B are:

node A: x-tomponent fixed, y-component fixed;

node B: x-component fixed;
then the x-component is fixed for the new node between nodes A and B. If the
boundary conditions of the nodes are such that the conditions on one parent node are
not a subset of the conditions of the other parent node, an error is flagged.

For external loads specified by a pressure or shear load card (page 157 in the DYNA2D
manual) the new nodes are added to the data. Therefore, the pressure and shear loads
are generated exactly as in a regular run.

A similar procedure was tried for the slideline data. However, we have not been able to
successfully continue a run with slidelines in which adaptivity introduced new nodes
along the slidelines. This option requires further work.

The program for these functions is in a block of subroutines with a root LP. These

subroutines are called from DYNA2D. Two ways of making adaptive runs have been
included:

15




1. automatic adaptivity, which completes a run using the go-back procedure

previously;
2. interactive adaptivity procedure, in which the user can initiate adaptivity at any time

on the basis on run-time plots by interrupting the run.
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SECTION 3
EXAMPLES OF H-ADAPTIVE CALCULATIONS

3.1 TAYLOR IMPACT PROBLEM.

To illustrate the performance of the h-adaptive procedure, the Taylor rod impact
problem, which is a standard DYNA2D problem was solved. The problem was solved
in three ways: using a coarse mesh of 3x10 elements, using a fine mesh of 12x10
elements, and using the h-adaptive procedure starting from the coarse mesh. The
problem is axisymmetric, so axisymmetric elements were used. In the h-adaptive
simulation, the MLS error criterion was used with a refinement threshold of 0.002 and
two levels of adaptivity were permitted. The total simulation time was 80ms. Error
checks and adaptivity were performed every 5ms, so a changes were made in the mesh
16 times.

The rod is a copper rod with a Young’s modulus 117GPa and a Poisson’s ratio of 0.4.
The material is isotropic-elastic-plastic with a yield stress of 400 MPa and a target
modulus of 100 MPa. The initial velocity of the rod was 227m/s, and the bottom nodes
were constrained in the z-direction at the start of the simulation to model an impact
with a rigid wall.

The evolution of the adaptive mesh is shown in Figures 3-1 and 3-2. It can be seen that
the refinement slowly progresses upward from the impacted surface, but that the top of
the rod is never refined. For comparison, the deformed mesh for the fine-mesh solution
is shown in Figure 3-3. Comparison of the two meshes reveals good agreement.

The displacement at the centerpoint of the free end and midpoint of the rod are
compared for the three different meshes in Figure 3-4. It can be seen that the h-adaptive
solution agrees exactly with the fine mesh solution, whereas the coarse mesh solution
differs moderately from the two. The velocities for these two points are compared in
Figure 3-5.

Again, the adaptive results compare very well with the fine mesh results. At several
points in time, the h-adaptive solution exhibits moderate oscillations. In some instances,
these appear to be associated with the refinement of the elements near the node where
the velocity is output.

17
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Displacement of Free-end Point

1.2

coarse
fine
h-adaptive
0.8
0.6
coarse
fine
0.4 - h-adaptive
0.2 -
0.0 -+ . T y ' v ' . -
0 ) 20 40 60 - 80

Figure 3-4.

Axial displacements of free-end point and midpoint on the axis of
symmetry for Taylor rod problem; time is in ps.
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Velocity of Free-end Point

0.03-

0.02-

0.01-

0.00-
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Velocity of Midpoint
0.03 1

0.02
coarse
0.01 fine
h-adaptive

0.00

«0.01 Y T d T v T v 1

Figure 3-5.  Axial velocities of free-end point and midpoint on the axis of symmetry
for Taylor rod problem; time is in ps.
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Figure 3-6 shows the axial stress 6,, at the midpoint of the rod on the axis of symmetry.
The h-adaptive agrees very well with the fine mesh solution, particularly at later times,
but the h-adaptivé solution exhibits severe noise at about 40ms. This corresponds to the
time when refinement occurs in the area of the node for which the velocity is given. The
noise decays quite rapidly in time and appears to have no permanent effect on the
solution. '

The fine mesh solution requires 55 minutes of computer time, the h-adaptive solution
required 35 minutes. A SUN-SPARC 1 work station was used. The savings in computer
time are moderate but nevertheless significant. It should be noted that substantially
more time could be saved if the DYNA2D program had a subcycling capability so that
different time steps could be used in different parts of the mesh. DYNA2D uses a single
time step for the entire mesh, so that when the h-adaptivity introduces smaller elements,
the integration time step for the entire mesh is needed.

1.40E-02 T
1.20E-02
1.00E-02
8.00E-03

6.00E-03
4.00E-03
2.00E-03

= h-adaptive

0.00E+00
-2.00E-03

-4.00E-03
-6.00E-03
-8.00E-03 1

Figure 3.6 The axial stress 6, at the midpoint of the axis of the rod; time is in ps.
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3.2 BEAM PROBLEMS.

The response of a cantilever beam was simulated for an elastic material and an elastic-
plastic material. The problem definition is given in Figure 3-7, all units are non-
dimensional. A vertical load of magnitude 40 which remains in the vertical direction is
applied as a step function in time at the free end; the load is a traction with a parabolic
distribution which is maximum at the centerline and vanishes at the top and bottom.
The material parameters are as follows: Young’s modulus=10,000, Poisson’s ratio=300,
yield stress=300, the plastic tangent modulus=100, and the density =1; all units are non-
dimensional.

The problem was solved with three meshes: a coarse mesh with 2 elements in the
vertical direction, 10 elements in the horizontal direction; a fine mesh with 8 elements in
the vertical direction and 40 elements in the horizontal direction; an h-adaptive solution
starting with the coarse mesh and two levels of refinement. For the adaptive solution,
the projected Green strain error indicator was used with a threshold of 0.005 for

refinement.

The time-histories of the deflection of the end-point for the three runs for the elastic
beam is shown in Figure 3-8; for the elastic solution, no yielding was allowed. It can be
seen that the adaptive solution agrees reasonably well with the fine-mesh solution,
although the agreement between the h-adaptive and fine mesh solutions is not perfect.
Some of the discrepancy may be caused by the differences between the loading in the
two solutions, which results from the fact that in the fine mesh run, the load was
distributed over five nodes at the end, whereas for the coarse mesh solution the load is

distributed over 3 nodes.

The time histories of the end-point deflections for the three runs with the elastic-plastic
beam are shown in Figure 3-9. Again, there are moderate differences between the h-
adaptive solution and the fine mesh solution, but the h-adaptive solution agrees much
better with the fine mesh solution. The deformed meshes are shown in Figure 3-10. As
can be seen, the refinement is concentrated at the supported edge where the strains and
strain gradients are maximum.
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Figure 3-8.  Displacement of free end of elastic beam as a function of time.
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Figure 3-9. Displacement of free end of elastic-plastic beam as a function of time.
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SECTION 4
CONCLUSIONS

An adaptive procedure has been implemented in the DYNA2D program for the
nonlinear transient analysis of solids. A procedure was developed so that the program
for implementing h-adaptivity is totally separate from the DYNA2D program. This
enables the procedure to be used with other versions of the DYNA2D program, such as
subsequent releases or modified versions developed in-house by various organizations.
The new procedure utilizes the rezone and remap algorithms in DYNAZ2D in
conjunction with the restart options. Thus the programming for adaptivity deals
primarily with the implementation of the error and refinement criteria and with the
selection of elements to be subdivided and is completely separate from DYNA2D.

In the h-adaptive procedure developed here, the mesh can be refined to several levels by
subdividing quadrilaterals into four quadrilaterals. The error and refinement criteria
select the elements which are to be refined. Several error and refinement indicators
were incorporated in the program: a projection-based error indicator using the Green
strain and refinement indicators based on effective stress and effective plastic strain. In
preliminary studies, we also tested error indicators based on projections on the stress.
We found that error indicators were not as useful for the class of nonlinear materials
which were studied, elastic-plastic type materials, because the stress in the plastic zone
is spatially quite uniform even when there are large variations in the strains. In many
situations, a criterion for refinement based on the magnitude of the effective plastic
strain works quite well, because refinement is usually needed in the areas of most
severe nonlinearities and these are the areas where the effective plastic strain is very
large. The projection criterion based on Green strain was quite effective in refining in

areas of plastic response.

Comparisons were made between coarse mesh, fine mesh and h-adaptive solutions for
three problems: the Taylor impact problem, an elastic beam problem and an elastic-
plastic beam problem. The results show that the h-adaptive solutions compare quite
well with the fine mesh solution even though the h-adaptive solution requires
substantially fewer elements. It was found that the moving least square projection
indicator based on Green strain developed here is quite effective in selecting the
elements that need to be refined. The running time for the h-adaptive solutions is
approximately 30-40% less than for the fine mesh solutions. This is a substantial saving
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but has not been achieved, for example in h-adaptive procedures which are directly
incorporated in a program. For comparable problems, fine mesh solutions generally
took two and a half times as long as an adaptive solution.

There are two reasons for the failure to achieve larger savings of computation time:

1. the use of an external program to implement adaptivity involves the writing of
restart files and the transfer between the two programs which is not necessary when h-
adaptivity is built into a program;

2. the DYNA2D program does not have a subcycling, in which different time steps can
be used in different parts of the mesh, so that the smaller elements can be integrated by
a smaller time step, while the remainder of the mesh is integrated with larger time step.

The absence of subcycling is particularly costly in h-adaptive procedures because every
level of refinement decreases the stable time step by a factor of two. Therefore it is
important that explicit structural dynamics program with h-adaptivity have a
subcycling feature. It is recommended that subcycling be incorporated in the DYNA2D
codes for it not only improves the performance of the problems in h-adaptive problems
but can also lead to substantial computational savings in standard solution procedures.

Another difficulty which we encountered was in defining boundary conditions, loads
and sliding interface data for meshes subsequent to h-adaptivity. With the structure of
current programs such as DYNAZ2D, the problem definition and consequently the
boundary conditions, loads, and other data are defined discretely and no higher level
description of the problem is available which could provide the primitive data is
available. This is a particular difficulty in prescribing boundary conditions to
descendant nodes which are generated in the h-adaptive procedure, because the
boundary conditions on the new nodes must be developed from simple rules. Although
in most cases, simple rules such as the ones devised here are able to assign the right
boundary conditions, the procedure has a degree of uncertainty which is not desirable
in production codes. The usability of programs such as DYNA2D could be enhanced if
the descriptive data could be input in a much more general fashion for it would
eliminate a substantial burden for the users.

The procedure developed here is a useful model for introducing the h-adaptivity into
other general purpose programs. The addition of adaptivity by directly modifying a
program is usually extremely difficult because of the large varieties of functionalities
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which characterize these programs. When internal extensive modifications are made, it
is difficult not to disrupt these functionalities. On the other hand, restart and rezoning
should be a feature of any useful nonlinear solid mechanics program. By utilizing these
features as described here, #-adaptivity can be implemented in a reasonably
straightforward manner, although the efficiency will not match that of a program
developed completely with h-adaptivity.
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